Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
active(f(0)) → mark(cons(0, f(s(0))))
active(f(s(0))) → mark(f(p(s(0))))
active(p(s(X))) → mark(X)
mark(f(X)) → active(f(mark(X)))
mark(0) → active(0)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(p(X)) → active(p(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
p(mark(X)) → p(X)
p(active(X)) → p(X)
Q is empty.
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
active(f(0)) → mark(cons(0, f(s(0))))
active(f(s(0))) → mark(f(p(s(0))))
active(p(s(X))) → mark(X)
mark(f(X)) → active(f(mark(X)))
mark(0) → active(0)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(p(X)) → active(p(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
p(mark(X)) → p(X)
p(active(X)) → p(X)
Q is empty.
Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:
CONS(mark(X1), X2) → CONS(X1, X2)
ACTIVE(f(s(0))) → MARK(f(p(s(0))))
MARK(s(X)) → MARK(X)
P(mark(X)) → P(X)
MARK(p(X)) → ACTIVE(p(mark(X)))
MARK(cons(X1, X2)) → MARK(X1)
CONS(X1, mark(X2)) → CONS(X1, X2)
ACTIVE(p(s(X))) → MARK(X)
CONS(X1, active(X2)) → CONS(X1, X2)
ACTIVE(f(0)) → F(s(0))
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(p(X)) → MARK(X)
MARK(f(X)) → MARK(X)
ACTIVE(f(0)) → MARK(cons(0, f(s(0))))
F(active(X)) → F(X)
F(mark(X)) → F(X)
S(active(X)) → S(X)
S(mark(X)) → S(X)
MARK(s(X)) → S(mark(X))
ACTIVE(f(0)) → S(0)
MARK(cons(X1, X2)) → CONS(mark(X1), X2)
P(active(X)) → P(X)
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
MARK(p(X)) → P(mark(X))
MARK(f(X)) → ACTIVE(f(mark(X)))
ACTIVE(f(0)) → CONS(0, f(s(0)))
MARK(0) → ACTIVE(0)
MARK(f(X)) → F(mark(X))
ACTIVE(f(s(0))) → P(s(0))
CONS(active(X1), X2) → CONS(X1, X2)
ACTIVE(f(s(0))) → F(p(s(0)))
The TRS R consists of the following rules:
active(f(0)) → mark(cons(0, f(s(0))))
active(f(s(0))) → mark(f(p(s(0))))
active(p(s(X))) → mark(X)
mark(f(X)) → active(f(mark(X)))
mark(0) → active(0)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(p(X)) → active(p(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
p(mark(X)) → p(X)
p(active(X)) → p(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
CONS(mark(X1), X2) → CONS(X1, X2)
ACTIVE(f(s(0))) → MARK(f(p(s(0))))
MARK(s(X)) → MARK(X)
P(mark(X)) → P(X)
MARK(p(X)) → ACTIVE(p(mark(X)))
MARK(cons(X1, X2)) → MARK(X1)
CONS(X1, mark(X2)) → CONS(X1, X2)
ACTIVE(p(s(X))) → MARK(X)
CONS(X1, active(X2)) → CONS(X1, X2)
ACTIVE(f(0)) → F(s(0))
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(p(X)) → MARK(X)
MARK(f(X)) → MARK(X)
ACTIVE(f(0)) → MARK(cons(0, f(s(0))))
F(active(X)) → F(X)
F(mark(X)) → F(X)
S(active(X)) → S(X)
S(mark(X)) → S(X)
MARK(s(X)) → S(mark(X))
ACTIVE(f(0)) → S(0)
MARK(cons(X1, X2)) → CONS(mark(X1), X2)
P(active(X)) → P(X)
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
MARK(p(X)) → P(mark(X))
MARK(f(X)) → ACTIVE(f(mark(X)))
ACTIVE(f(0)) → CONS(0, f(s(0)))
MARK(0) → ACTIVE(0)
MARK(f(X)) → F(mark(X))
ACTIVE(f(s(0))) → P(s(0))
CONS(active(X1), X2) → CONS(X1, X2)
ACTIVE(f(s(0))) → F(p(s(0)))
The TRS R consists of the following rules:
active(f(0)) → mark(cons(0, f(s(0))))
active(f(s(0))) → mark(f(p(s(0))))
active(p(s(X))) → mark(X)
mark(f(X)) → active(f(mark(X)))
mark(0) → active(0)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(p(X)) → active(p(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
p(mark(X)) → p(X)
p(active(X)) → p(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 5 SCCs with 10 less nodes.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
P(active(X)) → P(X)
P(mark(X)) → P(X)
The TRS R consists of the following rules:
active(f(0)) → mark(cons(0, f(s(0))))
active(f(s(0))) → mark(f(p(s(0))))
active(p(s(X))) → mark(X)
mark(f(X)) → active(f(mark(X)))
mark(0) → active(0)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(p(X)) → active(p(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
p(mark(X)) → p(X)
p(active(X)) → p(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
P(active(X)) → P(X)
P(mark(X)) → P(X)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs:
- P(active(X)) → P(X)
The graph contains the following edges 1 > 1
- P(mark(X)) → P(X)
The graph contains the following edges 1 > 1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
S(mark(X)) → S(X)
S(active(X)) → S(X)
The TRS R consists of the following rules:
active(f(0)) → mark(cons(0, f(s(0))))
active(f(s(0))) → mark(f(p(s(0))))
active(p(s(X))) → mark(X)
mark(f(X)) → active(f(mark(X)))
mark(0) → active(0)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(p(X)) → active(p(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
p(mark(X)) → p(X)
p(active(X)) → p(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
S(active(X)) → S(X)
S(mark(X)) → S(X)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs:
- S(mark(X)) → S(X)
The graph contains the following edges 1 > 1
- S(active(X)) → S(X)
The graph contains the following edges 1 > 1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
CONS(X1, active(X2)) → CONS(X1, X2)
CONS(mark(X1), X2) → CONS(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)
CONS(X1, mark(X2)) → CONS(X1, X2)
The TRS R consists of the following rules:
active(f(0)) → mark(cons(0, f(s(0))))
active(f(s(0))) → mark(f(p(s(0))))
active(p(s(X))) → mark(X)
mark(f(X)) → active(f(mark(X)))
mark(0) → active(0)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(p(X)) → active(p(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
p(mark(X)) → p(X)
p(active(X)) → p(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
CONS(mark(X1), X2) → CONS(X1, X2)
CONS(X1, active(X2)) → CONS(X1, X2)
CONS(X1, mark(X2)) → CONS(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs:
- CONS(X1, active(X2)) → CONS(X1, X2)
The graph contains the following edges 1 >= 1, 2 > 2
- CONS(mark(X1), X2) → CONS(X1, X2)
The graph contains the following edges 1 > 1, 2 >= 2
- CONS(active(X1), X2) → CONS(X1, X2)
The graph contains the following edges 1 > 1, 2 >= 2
- CONS(X1, mark(X2)) → CONS(X1, X2)
The graph contains the following edges 1 >= 1, 2 > 2
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
F(mark(X)) → F(X)
F(active(X)) → F(X)
The TRS R consists of the following rules:
active(f(0)) → mark(cons(0, f(s(0))))
active(f(s(0))) → mark(f(p(s(0))))
active(p(s(X))) → mark(X)
mark(f(X)) → active(f(mark(X)))
mark(0) → active(0)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(p(X)) → active(p(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
p(mark(X)) → p(X)
p(active(X)) → p(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
F(mark(X)) → F(X)
F(active(X)) → F(X)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs:
- F(mark(X)) → F(X)
The graph contains the following edges 1 > 1
- F(active(X)) → F(X)
The graph contains the following edges 1 > 1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ RuleRemovalProof
Q DP problem:
The TRS P consists of the following rules:
ACTIVE(f(s(0))) → MARK(f(p(s(0))))
MARK(s(X)) → MARK(X)
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
MARK(p(X)) → ACTIVE(p(mark(X)))
MARK(cons(X1, X2)) → MARK(X1)
MARK(p(X)) → MARK(X)
ACTIVE(p(s(X))) → MARK(X)
MARK(f(X)) → MARK(X)
MARK(f(X)) → ACTIVE(f(mark(X)))
ACTIVE(f(0)) → MARK(cons(0, f(s(0))))
The TRS R consists of the following rules:
active(f(0)) → mark(cons(0, f(s(0))))
active(f(s(0))) → mark(f(p(s(0))))
active(p(s(X))) → mark(X)
mark(f(X)) → active(f(mark(X)))
mark(0) → active(0)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(p(X)) → active(p(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
p(mark(X)) → p(X)
p(active(X)) → p(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the rule removal processor [15] with the following polynomial ordering [25], at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:
MARK(f(X)) → MARK(X)
Used ordering: POLO with Polynomial interpretation [25]:
POL(0) = 0
POL(ACTIVE(x1)) = 2·x1
POL(MARK(x1)) = 2·x1
POL(active(x1)) = x1
POL(cons(x1, x2)) = 2·x1 + x2
POL(f(x1)) = 2 + 2·x1
POL(mark(x1)) = x1
POL(p(x1)) = x1
POL(s(x1)) = 2·x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
ACTIVE(f(s(0))) → MARK(f(p(s(0))))
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(s(X)) → MARK(X)
MARK(p(X)) → ACTIVE(p(mark(X)))
MARK(cons(X1, X2)) → MARK(X1)
MARK(p(X)) → MARK(X)
ACTIVE(f(0)) → MARK(cons(0, f(s(0))))
MARK(f(X)) → ACTIVE(f(mark(X)))
ACTIVE(p(s(X))) → MARK(X)
The TRS R consists of the following rules:
active(f(0)) → mark(cons(0, f(s(0))))
active(f(s(0))) → mark(f(p(s(0))))
active(p(s(X))) → mark(X)
mark(f(X)) → active(f(mark(X)))
mark(0) → active(0)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(p(X)) → active(p(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
p(mark(X)) → p(X)
p(active(X)) → p(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
MARK(s(X)) → ACTIVE(s(mark(X)))
The remaining pairs can at least be oriented weakly.
ACTIVE(f(s(0))) → MARK(f(p(s(0))))
MARK(s(X)) → MARK(X)
MARK(p(X)) → ACTIVE(p(mark(X)))
MARK(cons(X1, X2)) → MARK(X1)
MARK(p(X)) → MARK(X)
ACTIVE(f(0)) → MARK(cons(0, f(s(0))))
MARK(f(X)) → ACTIVE(f(mark(X)))
ACTIVE(p(s(X))) → MARK(X)
Used ordering: Polynomial interpretation [25]:
POL(0) = 0
POL(ACTIVE(x1)) = x1
POL(MARK(x1)) = 1
POL(active(x1)) = 0
POL(cons(x1, x2)) = 0
POL(f(x1)) = 1
POL(mark(x1)) = 0
POL(p(x1)) = 1
POL(s(x1)) = 0
The following usable rules [17] were oriented:
f(mark(X)) → f(X)
f(active(X)) → f(X)
cons(X1, active(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
p(active(X)) → p(X)
p(mark(X)) → p(X)
s(active(X)) → s(X)
s(mark(X)) → s(X)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
ACTIVE(f(s(0))) → MARK(f(p(s(0))))
MARK(s(X)) → MARK(X)
MARK(p(X)) → ACTIVE(p(mark(X)))
MARK(cons(X1, X2)) → MARK(X1)
MARK(p(X)) → MARK(X)
ACTIVE(p(s(X))) → MARK(X)
MARK(f(X)) → ACTIVE(f(mark(X)))
ACTIVE(f(0)) → MARK(cons(0, f(s(0))))
The TRS R consists of the following rules:
active(f(0)) → mark(cons(0, f(s(0))))
active(f(s(0))) → mark(f(p(s(0))))
active(p(s(X))) → mark(X)
mark(f(X)) → active(f(mark(X)))
mark(0) → active(0)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(p(X)) → active(p(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
p(mark(X)) → p(X)
p(active(X)) → p(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
MARK(p(X)) → MARK(X)
ACTIVE(p(s(X))) → MARK(X)
The remaining pairs can at least be oriented weakly.
ACTIVE(f(s(0))) → MARK(f(p(s(0))))
MARK(s(X)) → MARK(X)
MARK(p(X)) → ACTIVE(p(mark(X)))
MARK(cons(X1, X2)) → MARK(X1)
MARK(f(X)) → ACTIVE(f(mark(X)))
ACTIVE(f(0)) → MARK(cons(0, f(s(0))))
Used ordering: Polynomial interpretation [25]:
POL(0) = 0
POL(ACTIVE(x1)) = x1
POL(MARK(x1)) = x1
POL(active(x1)) = x1
POL(cons(x1, x2)) = x1
POL(f(x1)) = 0
POL(mark(x1)) = x1
POL(p(x1)) = 1 + x1
POL(s(x1)) = x1
The following usable rules [17] were oriented:
mark(0) → active(0)
active(f(0)) → mark(cons(0, f(s(0))))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
active(p(s(X))) → mark(X)
mark(s(X)) → active(s(mark(X)))
mark(f(X)) → active(f(mark(X)))
active(f(s(0))) → mark(f(p(s(0))))
mark(p(X)) → active(p(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
cons(X1, active(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
p(active(X)) → p(X)
p(mark(X)) → p(X)
s(active(X)) → s(X)
s(mark(X)) → s(X)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
ACTIVE(f(s(0))) → MARK(f(p(s(0))))
MARK(s(X)) → MARK(X)
MARK(p(X)) → ACTIVE(p(mark(X)))
MARK(cons(X1, X2)) → MARK(X1)
ACTIVE(f(0)) → MARK(cons(0, f(s(0))))
MARK(f(X)) → ACTIVE(f(mark(X)))
The TRS R consists of the following rules:
active(f(0)) → mark(cons(0, f(s(0))))
active(f(s(0))) → mark(f(p(s(0))))
active(p(s(X))) → mark(X)
mark(f(X)) → active(f(mark(X)))
mark(0) → active(0)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(p(X)) → active(p(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
p(mark(X)) → p(X)
p(active(X)) → p(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
MARK(p(X)) → ACTIVE(p(mark(X)))
The remaining pairs can at least be oriented weakly.
ACTIVE(f(s(0))) → MARK(f(p(s(0))))
MARK(s(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
ACTIVE(f(0)) → MARK(cons(0, f(s(0))))
MARK(f(X)) → ACTIVE(f(mark(X)))
Used ordering: Polynomial interpretation [25]:
POL(0) = 0
POL(ACTIVE(x1)) = 0
POL(MARK(x1)) = x1
POL(active(x1)) = x1
POL(cons(x1, x2)) = x1
POL(f(x1)) = 0
POL(mark(x1)) = x1
POL(p(x1)) = 1
POL(s(x1)) = x1
The following usable rules [17] were oriented:
none
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
ACTIVE(f(s(0))) → MARK(f(p(s(0))))
MARK(s(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
MARK(f(X)) → ACTIVE(f(mark(X)))
ACTIVE(f(0)) → MARK(cons(0, f(s(0))))
The TRS R consists of the following rules:
active(f(0)) → mark(cons(0, f(s(0))))
active(f(s(0))) → mark(f(p(s(0))))
active(p(s(X))) → mark(X)
mark(f(X)) → active(f(mark(X)))
mark(0) → active(0)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(p(X)) → active(p(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
p(mark(X)) → p(X)
p(active(X)) → p(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
MARK(s(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
ACTIVE(f(s(0))) → MARK(f(p(s(0))))
MARK(cons(X1, X2)) → MARK(X1)
MARK(f(X)) → ACTIVE(f(mark(X)))
ACTIVE(f(0)) → MARK(cons(0, f(s(0))))
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1) = ACTIVE(x1)
f(x1) = x1
s(x1) = s(x1)
0 = 0
MARK(x1) = MARK(x1)
p(x1) = x1
cons(x1, x2) = x1
mark(x1) = x1
active(x1) = x1
Recursive path order with status [2].
Quasi-Precedence:
[ACTIVE1, 0, MARK1] > s1
Status: MARK1: multiset
s1: multiset
0: multiset
ACTIVE1: multiset
The following usable rules [17] were oriented:
f(mark(X)) → f(X)
f(active(X)) → f(X)
cons(X1, active(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
p(active(X)) → p(X)
p(mark(X)) → p(X)
s(active(X)) → s(X)
s(mark(X)) → s(X)
mark(0) → active(0)
active(f(0)) → mark(cons(0, f(s(0))))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
active(p(s(X))) → mark(X)
mark(s(X)) → active(s(mark(X)))
mark(f(X)) → active(f(mark(X)))
active(f(s(0))) → mark(f(p(s(0))))
mark(p(X)) → active(p(mark(X)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
ACTIVE(f(s(0))) → MARK(f(p(s(0))))
MARK(cons(X1, X2)) → MARK(X1)
ACTIVE(f(0)) → MARK(cons(0, f(s(0))))
MARK(f(X)) → ACTIVE(f(mark(X)))
The TRS R consists of the following rules:
active(f(0)) → mark(cons(0, f(s(0))))
active(f(s(0))) → mark(f(p(s(0))))
active(p(s(X))) → mark(X)
mark(f(X)) → active(f(mark(X)))
mark(0) → active(0)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(p(X)) → active(p(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
p(mark(X)) → p(X)
p(active(X)) → p(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
ACTIVE(f(0)) → MARK(cons(0, f(s(0))))
The remaining pairs can at least be oriented weakly.
ACTIVE(f(s(0))) → MARK(f(p(s(0))))
MARK(cons(X1, X2)) → MARK(X1)
MARK(f(X)) → ACTIVE(f(mark(X)))
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1) = x1
f(x1) = f(x1)
s(x1) = s(x1)
0 = 0
MARK(x1) = x1
p(x1) = x1
cons(x1, x2) = x1
mark(x1) = x1
active(x1) = x1
Recursive path order with status [2].
Quasi-Precedence:
[f1, s1] > 0
Status: f1: [1]
s1: [1]
0: multiset
The following usable rules [17] were oriented:
f(mark(X)) → f(X)
f(active(X)) → f(X)
cons(X1, active(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
p(active(X)) → p(X)
p(mark(X)) → p(X)
s(active(X)) → s(X)
s(mark(X)) → s(X)
mark(0) → active(0)
active(f(0)) → mark(cons(0, f(s(0))))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
active(p(s(X))) → mark(X)
mark(s(X)) → active(s(mark(X)))
mark(f(X)) → active(f(mark(X)))
active(f(s(0))) → mark(f(p(s(0))))
mark(p(X)) → active(p(mark(X)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
ACTIVE(f(s(0))) → MARK(f(p(s(0))))
MARK(cons(X1, X2)) → MARK(X1)
MARK(f(X)) → ACTIVE(f(mark(X)))
The TRS R consists of the following rules:
active(f(0)) → mark(cons(0, f(s(0))))
active(f(s(0))) → mark(f(p(s(0))))
active(p(s(X))) → mark(X)
mark(f(X)) → active(f(mark(X)))
mark(0) → active(0)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(p(X)) → active(p(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
p(mark(X)) → p(X)
p(active(X)) → p(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 2 SCCs.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ Instantiation
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ACTIVE(f(s(0))) → MARK(f(p(s(0))))
MARK(f(X)) → ACTIVE(f(mark(X)))
The TRS R consists of the following rules:
active(f(0)) → mark(cons(0, f(s(0))))
active(f(s(0))) → mark(f(p(s(0))))
active(p(s(X))) → mark(X)
mark(f(X)) → active(f(mark(X)))
mark(0) → active(0)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(p(X)) → active(p(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
p(mark(X)) → p(X)
p(active(X)) → p(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By instantiating [15] the rule MARK(f(X)) → ACTIVE(f(mark(X))) we obtained the following new rules:
MARK(f(p(s(0)))) → ACTIVE(f(mark(p(s(0)))))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ Instantiation
↳ QDP
↳ QDPOrderProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ACTIVE(f(s(0))) → MARK(f(p(s(0))))
MARK(f(p(s(0)))) → ACTIVE(f(mark(p(s(0)))))
The TRS R consists of the following rules:
active(f(0)) → mark(cons(0, f(s(0))))
active(f(s(0))) → mark(f(p(s(0))))
active(p(s(X))) → mark(X)
mark(f(X)) → active(f(mark(X)))
mark(0) → active(0)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(p(X)) → active(p(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
p(mark(X)) → p(X)
p(active(X)) → p(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
ACTIVE(f(s(0))) → MARK(f(p(s(0))))
The remaining pairs can at least be oriented weakly.
MARK(f(p(s(0)))) → ACTIVE(f(mark(p(s(0)))))
Used ordering: Matrix interpretation [3]:
Non-tuple symbols:
M( cons(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
Tuple symbols:
Matrix type:
We used a basic matrix type which is not further parametrizeable.
As matrix orders are CE-compatible, we used usable rules w.r.t. argument filtering in the order.
The following usable rules [17] were oriented:
f(mark(X)) → f(X)
f(active(X)) → f(X)
cons(X1, active(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
p(active(X)) → p(X)
p(mark(X)) → p(X)
s(active(X)) → s(X)
s(mark(X)) → s(X)
mark(0) → active(0)
active(f(0)) → mark(cons(0, f(s(0))))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
active(p(s(X))) → mark(X)
mark(s(X)) → active(s(mark(X)))
mark(f(X)) → active(f(mark(X)))
active(f(s(0))) → mark(f(p(s(0))))
mark(p(X)) → active(p(mark(X)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ Instantiation
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
MARK(f(p(s(0)))) → ACTIVE(f(mark(p(s(0)))))
The TRS R consists of the following rules:
active(f(0)) → mark(cons(0, f(s(0))))
active(f(s(0))) → mark(f(p(s(0))))
active(p(s(X))) → mark(X)
mark(f(X)) → active(f(mark(X)))
mark(0) → active(0)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(p(X)) → active(p(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
p(mark(X)) → p(X)
p(active(X)) → p(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 0 SCCs with 1 less node.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
Q DP problem:
The TRS P consists of the following rules:
MARK(cons(X1, X2)) → MARK(X1)
The TRS R consists of the following rules:
active(f(0)) → mark(cons(0, f(s(0))))
active(f(s(0))) → mark(f(p(s(0))))
active(p(s(X))) → mark(X)
mark(f(X)) → active(f(mark(X)))
mark(0) → active(0)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(p(X)) → active(p(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
p(mark(X)) → p(X)
p(active(X)) → p(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
Q DP problem:
The TRS P consists of the following rules:
MARK(cons(X1, X2)) → MARK(X1)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs:
- MARK(cons(X1, X2)) → MARK(X1)
The graph contains the following edges 1 > 1